

HARD CORE A Zoned Embankment Case Study Chad C. Mayers, P.E.

schnabel-eng.com

Overview

- Introduction
- Soil Cement
- Problem
- Solution
- Analyses
- Results
- Lessons Learned

Introduction

- 18.8 miles I-270/I370 to I-95/US-1
- 6-lane divided highway
- 8 full interchanges
- 1 partial interchange
- Significant cut → fill
 - 6+ million cy

Introduction

Purpose:

- Link existing and proposed development
- State-of-the-art, multi-modal, east-west, limited/controlle d access
- Move passengers and goods

Soil Cement

- Modification: Temporary
 - Reduces soil plasticity
 - Increases strength
- Stabilization: Permanent
 - Permanent strength increase
 - Increased resilient modulus
 - Reduce shrink/swell
 - Freeze/thaw resistance

Soil Cement

- Most benefit in granular soils
- Formation of calcium silicate hydrate
- Dose depends on strength, durability

Problem

- Natural moisture content of half of site soils greater than optimum
- Year-round fill placement
- Embankments up to 35-ft high
- Silts, Silty Sands

- PI = NP 30
- Max. Dry Density = 110 pcf
- OMC = 12%
- \blacksquare NMC = 25 45% +

Solution

- Zoned Embankment Concept Team
- Schnabel to design core material
- Add cement to core soils:
 - Reduce compacted fill density while:
 - Achieving soil strength
 - Reducing compressibility
 - Modify soil index properties
 - Reduce plasticity
 - Improve workability
 - Allow placement at much higher moisture contents

Solution

Solution

- Pavement Subgrade
 - Use specified subgrade soils
 - Durability
 - Support
- Landscaping
 - Use specified soils
- Leachate
- Slope Stability
 - Shell soils
 - Core soils
- Compressibility

Analyses

- Slope stability
- Global embankment slope stability: FS>1.3
 - Cohesion = 720 psf
 - UCS > 10 psi

Analyses

Embankment loads

- Max embankment height of 35-ft, 32.5-ft to TOS
- Max Overburden Pressure = 120 pcf*32.5 ft + 250 psf (traffic load) + 325 psf (pavement section) = 4,475 psf = 31 psi
- 31 psi * 1.3 (FS) = 40 psi

- Laboratory tests
- Samples at 0, 3, 4, 6% Cement
 - Classification
 - Proctors (Std/Mod)
 - Unconfined Compression
 - Molded to 85, 90, 95% of Std, 92% of Mod
 - Wet as possible to achieve density
 - Cured 1, 7, 14, 28 days
 - Consolidation

Unconfined Compressive Strength vs. Dry Density 7-Day Results

Unconfined Compressive Strength vs. Moisture Content 7-Day Results

Results – Field Procedures

- Zoned embankment
 - Cement dose of 3-percent
 - Compact to 85% MDD per AASHTO T-99
 - Dry density > 80 pcf
 - Moisture content < 40%</p>
- Test strips
 - Establish effective construction methods
 - Establish QC tests
 - Verify core properties are achieved

Results - Quality Control Procedures

- Visual observations
- Perform >10 nuclear density tests per lift/day
- Mold compressive strength test cylinders
 - +/- 2 pcf of lowest density recorded
 - Cure and compressive strength test at 7 days
 - UCS > 40 psi at 7 days

- Success!
 - Concept allowed Contractor to place fill
 - Met project schedule
 - ICCB dropped zone, increased cement & compaction

Lessons Learned

- Cement useful at low doses
- Same cement used in lab testing must be used in the field
- Considering cement modification costly and time consuming
 - Warn client of costs and time
 - Need long lead time to study

Lessons Learned

- Need field procedures to mimic lab results
 - Expect variations
 - FS to account for variability in field/lab methods

QUESTIONS?

